
AD-A262 477

WL-TR-93-3005

A REAL-TIME, HARDWARE-IN-THE-LOOP
SIMULATION OF AN UNMANNED AERIAL
RESEARCH VEHICLE it

SCOTT D. ROBERTSON
FLIGHT CONTROL DIVISION
FLIGHT DYNAMICS DIRECTORATE
WRIGHT LABORATORY (AFMC)

AUG 1992 DTIC
/ t ELECTE

FINAL REPORT FOR 05/01/91-08/28/92 APR02 1993D

E D,

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

Reproduced From
Best Available Copy

FLIGHT DYNAMICS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT PATn'rRSON AFB OH 45433-7521 93-06816

98 4 01 078 li0olEollil •\O oO~'



NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, es
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including
foreign nations.

This technical report has been reviewed and is approved for publica-
tion.

SCOTT D. ROBERTSON, Capt, USAF RfDYe.BEAVIN
Project Engineer Control Data Group Section Leader
Control Systems Davelopment & Control Systems Development &
Applications Franch Applications Branch
Flight Control Division Flight Control Division

DAVID P. LEMASTER
Chief, Flight Control Division

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify WL/FIGS , WPAFB, OH 4 5 4 3 3 -_52L to help us maintain a current
mailing list.

Copies of this report should not be returned unless retuin is required by
security considerations, contractual obligations, or notice on a specific
document.



Form ApprovedREPORT DOCUMENTATION PAGE 0MB No. 0704-0188

P•I •Dre~Off 19b..der1 for Itho C:oltEdlonl Of InO~lm&lOnl 0S 11.mate'd to avefaqC I 110 h o fr '1iOM r•4O e nciudfng the timet f•f 1C1iLw~ng l11 intlJ•'tIl . lIa¢thlnlq e..stlnqj data Ioti~tn.
9atheorq and matin n the data needed, and eos'leting and re..wnq tle toll*cton of nformatrten comments 1e4rdIng this burden ettimate or any othet Met of this
coilwton of informatlon. ,cl "ud19q g 0tlO. foe reducng this bu.rden. to aish.ngton PeadQuaners St"Keti. Directorate o. Infoemlation Oprations and Reporh. 1215 Jeffeirton
Dow~n fughway. SuIte 1204. AlrtltOn. VA 222 302. and to the Offce of Manaqeenent 4rd 9udget. PaperwOrk Reduction Project (0704-018U). ra•onmgton. DC •0503.

2. AGENCY USE ONLY (Lea've blank) J. REPORT DATE )P3" REPORT TYPE AND DA;ES COVERED
1.AGNC SEONY(Lav an) FI AUG 1992 1 FINAL 05/01/91--08/28/92

4. TITLE AND SUBTITLE A REAL-TIME, HARDWARE -IN-THE-LOOP S. FUNDING NUMBERS

SIMULATION OF AN UNMANNED AERIAL C
RESEARCH VEHICLE PE 62201

____._ AUPR 2403
6. AUTHOR(WCOTT D. ROBERTSON TA 07

WU 50

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION

FLIGHT CONTROL DIVISION REPORT NUMBER

FLIGHT DYNAMICS DIRECTORATE WL-TR-93-3005
WRIGHT LABORATORY (AFHC)

9. 10. SPONSORING / MONITORING

WRIGHT LABORATORY
AIR FORCE MATERIEL COMMAND
WL/FIGS, Attrin ROBERTSON 513-2558290

11. SUPPLEMENTARY NOTES

12s. D J Q VbILIftfftyEELEASE DISTRIBUTI1)N IS 12b. DISTRIBUTION rfOGE

UNLIMITED.

13. ABSTRACT (Maximum 200 words)

Simulation is a valuable tool for rapidly and cost effectively developing and verifying new
systems. This report describes the design and development of a system which simulates art
unmanned aircraft and verifies the proper operation of its flight computer. Flight computers, being
time critical devices, mus.t execute at a certain rate in order to safely and accurately control an
aircraft. In order to verify the proper operation of the flight computer, the simulation must execute
in 'real-time', which is a rate of 100 Hz for this flight computer. The flight computer's inputs and
outputs are connected to the simulation so that the flight computer thinks it is flying.

The simulation architecture is a VME-based computer system, consisting of an input board
(designed for this project) which demodulates 13 channels of pulse-width modulated signals, a
processor board which executes the simulation software, and a digital-to-analog output board. The
existing simulation software was ported to the C language and re-hosted on a 68030 processor
board. Additional software was written to handle all the I/O and data conversions. The system
accurately simulates the unmanned aircraft, runs in real-time, and verifies the proper operation of
the flight computer.

14. SUW.ECT TERMS 15. NUMBER OF PAGIS

Unmanned, Unmanned Aerial Vehicle, UAV, Simulation, Hardware 14. PRICE CODE

in the Loop simulat ion liNE-based system

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACTj UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01.280.5500 Standard Form 298 (Rev 2-89)
Prescribed by AN6Si Std Z39.1S



CONTENTS

FIGURES ............................. vi

TABLES ........................................................ vii

1. INTRODUCTION ............................................... 1

1.1 Background ............ o....................................1

1.2 Statement of Problem ........................................ 1

1.3 Overview of Design Requirements ................................ 3

1.4 Existing Capabilities .......................................... 3

1.5 Sequence of Presentation ...................................... 4

2. STMT. 7 ATION SYSTEM REQUIREMENTS .............. o............ 5

2.1 Timing Requirements ....................... o.................5

2.2 Simulation Software ......................................... 7

2.3 Signal Requirements .......................................... 7

2.4 Flight Computer Output Signals ................................. 7

2.5 Sensor Signals .............................................. 7 --

3. HARDWARE DESIGN OVERVIEW..................................... 10

3.1 Hardware Design Overview ........ I...........................10

3.2 Hardware Modules ....................................... 10

3.2.1 Processor Board ................... i................... 11

3.2.2 Digital-to-Analog Board ................................. 11

3.2.3 Pulse-Width DemQdulation ............................... 12



4. PULSE-WIDTH DEMODULATION BOARD DESIGN .................. 15

4.1 Pulse-Width Demodulation Board Requirements ................... 15

4.2 Top Level Design ........................................ 15

4.3 Operation of the Pulse-Width Demodulation Board ................ 17

4.4 Decoding the MC68332 Address Lines ........................... 17

4.5 Interfacing the MC68332 to the MVME6000 ...................... 17

4.6 Interfacing the MC68332 to the DPRAM ......................... 20

4.7 Interfacing the MVME6000 to the DPRAM ....................... 21

4.8 Interfacing the MC68332 to the EPROM ......................... 22

4.9 Interfacing the MVME6000 to the VMEbus ....................... 28

4.10 Reset Circuit and Status LEDs ................................ 28

5. SYSTEM SOFTWARE ....................................... 31

5.1 Software for the MC68332 Pulse-Width Demodulation Board ......... 31

5.2 Software for the MC68030 Processor Board ..................... 33

6. CONCLUSIONS ........................................... 36

6.1 System Performance ....................................... 3t,

6.2 Lim itations ................................................. 36

6.3 Future Enhancements .................................... 38

6.4 Conclusions ............................................ 38

APPENDICES
A. Pulse-Width Demodulation Board Schematics ................... 39

B. Pulse-Width Demodulation Board Layout ...................... 45

iv

• _ . -• . - .- . . ... _L- " -



C. Pulse-Wtidth Demodulation Board Parts List..................... 47

D. Programmable Generic Array Logic Device Equations .............. 49

BIBLIOGRAPHY............................................. 56

AAccesjon For
INTIS CRA&I
DTIC TAB
Ucnannounced
Justification

Avail and/or

=~C QUA'= zc

v

% 7



FIGURES

Figure Page
1. FIGL's Unmanned Research Vehicle ............................. 2

2. Flight Computer Software Execution Rate
vs Simulation Software Execution Rate ............................. 5

3. Flight Computer Software Execution Rate
vs Slow Simulation Software Execution Rate ........................ 6

4. Unmanned Research Vehicle Control Surfaces ...................... 8

5. Pulse-Width Commands to Control Surfaces ........................ 9

6. Top Level Simulation Architecture ............................... 11

7. Simulation System Hardware Diagram ............................ 12

8. Block Diagram of MC68332 ..................................... 13

9. MC68332 Business Card Computer ............................... 14

10. Functional Block Diagram of Pulse-Width
Demodulation Board ......................................... 16

11. MC68332 Memory Map for PWDBoard ........................... 18

12. MC68332 to MVME6000 DSACKx* Isolation Buffers ................ 19

13. MVME6000 DSACKx* Generation Logic .......................... 20

14. Timing Diagram for MC68332 to DPRAM Access .................... 22

15. DPRAM Left Side DSACK1* Generation .......................... 23

16. Minimum and Maximum Clocked GAL Delays ..................... 24

17. EPROM DSACKx* Delay Circuit ........................ , ....... 26

18. PWD Board Status LEDs ................................... 30

vi



19. Pulse-Width Board MC68332 Software Block Diagram ................ 32

20. 68030 Processor Board Software Functional Block Diagram ............ 34

21. Plots of Simulated Aircraft Responses to Single Axis Inputs ........... 37

Tables Page
1. Air Vehicle Sensor Channels ..................................... 9

2. VMEbus Memory Map ........................................ 28

vii



SECTION 1 - INTRODUCTION

1.1 BACKGROUND

The Flight Dynamics Directorate (FIGL), Wright Laboratory, Wright-Patterson
Air Force Base, utilizes an Unmanned Research Vehicle (URV) to conduct experiments
in flight control and aerospace vehicle management (Figure 1). By using an
unmanned vehicle, FIGL can flight test new control algorithms, flight computer
architectures, and sensor technology that would be too risky and/or expensive for
manned flight tests. Once these technologies have been tested and refined using
unmanned flight tests, they can be transitioned to manned aircraft with significantly
lower risk.

To reduce the risks to both the ground crew and the vehicle itself, there is a
need for a ground based simulation which can thoroughly exercise the on-board flight
computer. Such a capability would allow new hardware and software technologies to
be tested and debugged on the ground before they are flown. This would significently
reduce the inherent risks of flight testing new experiments, decrease the debugging
time for both developing and integrating experiments irto the vehicle, and increase
the chances for successful flight tests.

This thesis project covers the design, development, and test of a real time,
hardware-in-the-loop simulation of an unmanned aerial research vehicle. Since it is
the flight computer, the brain which controls the URV, that is constantly changing
and being tested during flight control algorithm and computer architecture
experiments, it is imperative that it operates correctly before being flown. Prior to
this project, only limited testing could be performed on the flight computer. The
purpose of this project is to provide the capability to ve.-ify the proper operation of the
aircraft's flight computer prior to flight testing. This will allow the pilot to practice
"flying" the flight computer an," get a feel for how the aircraft will respond to the
control algorithms or computer architecture being tested. It will also allow aircraft
state and control data to be collected for comparison against how the aircraft would
normally respond and against how the new algorithm or architecture was designed
tb respond. This capability will allow experiments to be rapidly developed and
debugged since they will not have to go through iterative flight tests for initial data
collection, and will greatly reduce the risks involved in flying new flight control
experiments.

1.2 STATEMENT OF PROBLEM

The objective of this thesis project is to design and develop an architecture for

. • ; i _. - [1



a real time simulation of an unmanned aerial research vehicle. The simulation must
be capable of non-intrusively verifying proper operation of the vehicle's on-board flight
computer. This includes the design and development of a pule-width demodulation
circuit board to decode the flight computer commands sent to the aircraft control
surfaces. Rea l time response of the simulation is critical for verifying proper operation

0 0

Figure 1: FIGL's Unmanned Research Vehicle

of experimental flight control algorithms and hardware configurations in the flight
computer. The simulatior must be able to fully exercise the flight computer such that
it will respond as if it were in-flight. This will provide the capability to perform
laboratory tests with real time response. on actual flight hardware and software,
verifying proper operation of hardware and/or software experiments prior to flight
testing.

2



1.3 OVERVIEW OF DESICN REQUIREMENTS

It is theoretically possible to connect an aircraft flight computer to a simulation
of the aircraft and 'fly" the flight computer. To do this, the simulation must process
the flight computer outputs, compute the next state of the vehicle (its roll, pitch, and
yaw rates and attitudes, airspeed, altitude, and side-slip), and generate the nucessary
flight computer input signals The flight computer can then be 'flown", behaving as
if it was flying in the aircraft. There are four main elements which are required to'
accomplish this type of "hardware-in-the-loop" simulation: an accurate computer
model of the aircraft, the computing power to execute the model in real time, the
interfaces for receiving and decoding the flight computer outputs, and the interfaces
for generating the flight computer inputs.

The configuration for the most accurate hardware-in-the-loop simulation
utilizes the flight computer in a non-invasive manner. That is, the flight computer
is taken as a whole and connected to the simulation in the same manner that it is
connected to the aircraft. This tests the input and output functions of the flight
computer as well as the control algorithms, producing the highest degree of confidence
that it will perform the same while controlling the aircraft in the air as it does in the
simulation. This thesis project will use this type t~f non invasive interface to the flightt
computer.

The flight computer uses pulse-width modulated outputs to command the
vehicle's control surfaces (ailerons, elevators, and rudders). A pulse-width signal is
a digital signal (either high or low) with a fixed period, who's high-time (the width of
the pulse) varies. The simulation system must take these pulse width signals, decode
themr into appropriate values, and provide them for input to the simulation software.*
Based on these inputs and the previous states of the aircraft, the simulation calculates
the next state of the aircraft. The 'next state of the aircraft" is the orientation and
rates that the aircraft should be in at the start of the next execution of the flight
computer control code. This "future" state of the aircraft must be converted into the
appropriate sensor signals which the flight computer uses as inputs for controlling the
vehicle. The flight computer executes its flight controi code iteratively at a rate of 50
Hz. For real time operation, the simulation must guarantee that it can decode all
necessary channels of pulse-width signals, generate the next state of the aircraft, and
provide the simulated sensor signals back to the flight computer before the flight
computer starts its next flight control execution cycle.

1.4 EXISTING SIMULATION CAPABILITIES

There are some specialized facilities available which can perform accurate
aircraft simulations in real time and provide simulated sensor feedback to the flight
computer. However, these facilities do not have the capability to decode all the
necessary pulse-width signals generated by this flight computer. Instead, they must
invade the flight computer and get the control surface commands before they are
converted to pulse-widith signals. This slightly lowers the degree of confidence that
the flight computer will operate the same while contirc!' ing the vehicle in flight. These
facilities are expensive and require a 1 to 2 week lead time to schedule the facility and



set up the experimer.t In contrast, the development costs for this project are about
equal to four simula:ftfn runs at such facilit;-s, and incur no additional cost per
simulation. Simulation turn-around times will be almost immediate, providing much
higher utili f f manpower and facilities, and shorter lead times for setting up and
executing fliL periments.

1.5 SEQUENCE OF PRESENTATION

Section 2 analy2es the timing requirements for achieving a real time
simulatiou as well as the signal types required for interfacing to the flight computer.
The hardware cements for the simulation (decode pulse-width signal, execute
simulation software, generate simulated sensor signals) are defined in Section 3.
Section 4 explains the design of a pulse-width demodulation circuit board anO its
operation. The software for the operation of the pulse-width demodulation board and
the softwpare for the aircraft simulation are described in Section 5. The test and
verification of the simulation is prezented and conclusions are drawn in Section 6.

4



SECTION 2 - SIMULATION SYSTEM REQUIREMENTS

2.1 TIMING REQUIREMENTS

The flight computer executes its software iteratively at a rate of 50 Hz. This
mtans that once every 20 milliueconds (ms) the flight computer samples the state of
the aircraft from the aircraft sensors, processes this information with the pilot
"commands, and generates commands for each control surface (ailerons, elevators,
rudders). Aircraft sensors provide rate, attitude, altitude, airspeed, and side-slip
information.

In order to provide real time response, the simulation must decode the control
surface command signals, calculate the next state of the vehicle, and output simulated
sensor signals (which reflect the new state of the vehicle) at least once every 20 ms.
See Figure 2. This is the only way to guarantee an accurate response from the flight
computer.

20 20m 20 .mI l l
start Flight Start Flight Mtart Plight Start Plight
Control code control Code Control Code Control Code
execution execution execution execution

10 a 10m W 10me 10G 10me

start start Start start Start start
Slmula- SLiula. simull- simula- Simula- simula-
tion tion tion tion tion tion
Code Code Code Code Code Code

FIgure 2: Flight Computer Software Execution Rate vs Simulation
Software Execution Rate

The only signals being generated by the flight computer are the pulse-width
commands. Though the pulse-width commands are updated by the flight computer
once every 20 ms, the pulse-widths are continuously being generated in order to
maintain a control surface position. Since the simulation is totally non-invasive to the
flight computer and there are no timing signals generated by the flight computer,
there is no way to synchronize the execution of the simulation software with the
execution of the flight computer software. In order to guarantee that the simulation

5



samples the pulse-width commands and generates the next state of the aircraft within
any given 20 ms window (the execution rate of the flight computer software), the
simulation software must execute at a minimum of twice the rate of the flight
computer software. This means that the simulation software must execute at least
once every 10 ms (100 Hz). If it is any slower, it will periodically be too late in
providing the next state of the aircraft to the flight computer. For example, if the
simulation software executes once every 11 ms, then the situation will occur when the
simulation software starts executing 1 ms before the flight computer begins executing,
as is shown in execution frame F,1 in Figure 3. The simulation will sample once
during frame F,,.,. However, it will not provide the state of the aircraft data until
frame Fn,+2 which is too late. The flight computer will have already sampled the state
of the aircraft before the simulation has provided it for frame F,-2. Accurate flight
computer response depends on the simulation sampling the surface positions and
updating the sensor signals within ever, frame of the flight computer software
execution.

P. P.,, P...,

.. I 1 .i" I .
Start Plight. Start Plight start Plight Start Plight
Control Code. Control Code Control Code Control Code
Execution Rtxecution * Eecation * Rxecution

. 11. *e 113. * 113 *n 113
/ p I I I. .

start start start Start Start
Smiula- SihMula- SiMila- imila- SLmla-
tion tion tion tion tion
Code Code Code Code Code

Figure 3: Flight Computer Software Execution Rate vs Slow Simulation
Software Execution Rate

In the worst case, if the flight computer is executing a very ýensitive controller
and the simulation takes longer than half the execution rate of the flight computer
software, the flight computer will occasionally sample old sensor data (the same data
it sampled the previous time it executed). The flight computer, thinking that the
vehicle is not responding, will increase the magnitude of its control sulrface commands.
When the simulation processes the larger commands and feeds the new state of the
vehicle back to the flight computer, the flight computer will realize\that the v.ehicle
has over responded and will reduce the control surfsce commands to compensate.
This can result in an oscillatory vehicle response, producing no useful imulation data.
In fact, it would appear that the flight computer cannot adequately cortrol the vehicle,
when it is actually a simulation problem.

6



2.2 SIMULATION SOFTWARE

The software model of the air vehicle was previously developed on a Sun
workstation using a simulation package called Easy V. A stand-alone Fortran
program was provided for this simulation project. The model requires extensive
double precision calculations and trigonometric functions.

2.3 SIGNAL REQUIREMENTS

2.3.1 Flight Computer Output Signals

The flight computer outputs 13 channels of TML level (0-5 volts) pulse-width
modulated signals to drive the actuators, which in turn control the position of the
aircraft control surfaces. The channels are as follows (see Figure 4 for a top view of
the aircraft's control surface,):

2 aileron channels (left and right)

2 elevator channels (left and right)

2 rudder channels (left and right)

4 flap channels (left and right inboard and outboard)

1 throttle channel

1 steering channel

I brake channel

Though the simulation samples all 13 channels to verify that they are operating
properly, only 3 channels are required for the simulation software: one aileron
channel, one elevator channel, and one rudder channel. The same pulse-width
command is given forlright and left channels, so only one of each needs to be sampled.

The pulse-widths are generated continuously with a period of 2 ms. The high
time varies between ms end 2 ms. A 1 ms pulse width generates a full control
surface deflection in one direction and a 2 ms pulse width generates a full control
surface deflection in the opposite direction. See Figure 5. A pulse width of 1.5 ms
places the control su' ace in the neutral position. Though the flight computer
commands 12-bits of a'uracy for the pulse-widths (a commanded resolution of 244
nanoseconds (ns) (1 ms/v = 244 ns)), it can only resolve its pulse-width outputs to 2
microseconds. In orde* to verify the accuracy of the pulse-width commands, the
simulation must decode these signals to the 2 microsecond (.s) resolution.

2.3.2 Sensor Signals

The flight computer requires sen~or information to control the vehicle. This

7



left aileron tright allerom
loft outboard flap right outboard flap

loft Inboard flap right Inboard flap

left rudder ht rudder

loft elevator right elevator

Figure 4: Unmanned Research Vehicle Control S:rfaces

information arrives in analog form from each sensor. Table 1 shows each sensor
channel, the type of signal it outputs, and the range of valuei it represents. The flight
computer has a 12-bit analog-to-digital converter which it uses to acquire this

-- information. The simulation, in turn, should continuously provide analog information
to the flight computer that is accurate to 12 bits for each of the channels in Table 1.

/
/"

/

: 8

• I. '- •



K2-.

Cross Section of Wing
Showing Aileron Deflection 2 Pulse

Width

+15' dcnlction = [ c]

-o 1.5 ma

Pulse Width
"0 deflection : [• _..J

-" 1ms Pulse~Width
-15" deflection =Width

(Maximum aileron deflection = *15")

Figure 5: Pulse-Width Commands to Control Surfaces

"Table 1: Air Vehicle Sensor Channels

'Sensior Channel - Signal Tp 'lunge

"Roll rate 0 - 5 volts analog -50 to 50 deg/see

Pitch rate 0 - 5 volts analog -50 to 50 deg/sec

Yaw rate 0 - 5 volts analog -50 to 50 deg/see

Roll attitude 0 - 5 volts analog -90 to 90 degrees

Pitch attitude 0 - 5 volts analog -60 to 60 degrees

Yaw attitude 0 - 5 volts analog -90 to 90 degrees

Altitude 0 - 5 volts analog 0 to 8000 feet

Air speed 0 - 5 volts analog 0 to 150 knots

9



SECTION 3 - SYSTEM HARDWARE DESIGN

3.1 HARDWARE DESIGN OVERVIEW

The aircraft's flight computer, with its embedded control algorithms, will be
connected to a system which simulates the air vehicle. Figure 6 shows the top level
design approach for how the flight computer will be connected to the simulation. The
simulation system must be capable of decoding the flight computer outputs, executing
the vehicle simulation code which calculates the next state of the air vehicle, and
generating simulated sensor signals for input to the flight computer. After
considering a number of implementation alternatives, the choice was narrowed down
to a personal computer-based simulation or a VMEbus-based solution. The VMEbus,
having a number of importart advantages over a personal computer-based system,
was chosen. The advantages include the availability of high performance I/O boards
and processor boards, ease of upgrading to higher performance processors and
additional I/O, and the ability to have multiple processor configurations for low cost,
high performance systems. Since the flight control computer is VME based, there are
added benefits to choosing a VME-based simulation system. Existing VME
development tools for the flight computer can be used in the development of the
simulation system. Also, as one of the steps in developing the simulation system, the
simulation software can be embedded into the flight computer at an early stage to
verify that the simulation software provides an accurate simulation of the air vehicle
and can execute in real time.

3.2 HARDWARE MODULES

A market survey of VME circuit beards showed that in order to meet the
functional requirements of the simulation, three separate boards are required (as
shown in Figure 7). A digital-to-analog (D/A) board is required to generate the 0-5
volt analog simulated sensor signals, and a high performance processor card with a
math coprocessor is required to execute the simulation code. However, there are
currently no VME boards on the market which can convert thirteen channels of pulse-
width modulated signals to digital values. Some boards can convert two channels of
pulse-width signals, but using seven such boards to convert 13 channels is not cost-
effective and will not fit in a standard eight slot VME rack (two slots are already
required for the D/A board and processor board). Therefore, a pulse-width
demodulation board had to be designed and built in order to run the simulation.

10

- -



3.2.1 Processor Board

The Heurikon HK68N3D VMEbus 68030-based Single Board Computer was
used to host the simulation software. This processor board uses a Motorola 68030
microprocessor running at 32 MHz and a Motorola 68882 floating point coprocessor.

Pilot
Commands -13 Channels of

a_ _Pulse-Width

Unmanned Aerial Signal Outputs

Flight Computer

8 Simulated
Analog Sensor
"ILiputs to Flight
Computer

Simulation System

Accept Pulse-Width Inputs

Output Simulated Sensors

Figure 6: Top Level Simulation Architecture

It has 12 megabytes of RAM (random access memory) and an EPROM
(erasable/programmable read-only memory) capacity of 2 megabytes. The board
supports full VMEbus addressing, bus mastering, and interrupt capabilities. Two
serial I/O ports and an RS-232C interface are provided. The board also has a Zilog
Z8536 counter/timer and parallel I/O unit.

3.2.2 Diaital-to-Analog Beard

The VME Microsystems International VMIVME-4132 32-Channel 12-Bit
Analog Output Board was chosen to provide the reqtuired analog signals. This is the
only 32-channel 12-bit D/A VME board on the market and was chosen to provide the
simulation system with extra channels of D/A for future expandability. This board

11

A A~~- -



provides 10mA (milliampere) of drive current over the full output range of -10 to + 10
volts. The output ranges can be set as 0 to 5 V, 0 to 10 V, -2.5 to +2.5 V, -5 to +5 V,
and -10 to +10 V. Output accuracy is 0.005 percent, and all outputs are updated every
3.4 ms. The output refresh rate can be increased to update all channels every 0.85
wns with slightly reduced output accuracy. The VMIVME-4132 also features a

Pilot
Commands /_13 Channels of

.[ unmaaned Aerial Pulse-Width
Uhmained Arial Signal Outputs

- Vehicle

"Flight Computer

8 Simulated
Analog Sensor
Inputs to Flight
Computer VMEbus Based

Simulation System

D C P
. •
A U

R '
D D

Figure 7: Simulation System Hardware Diagram

loopback test capability to measure the voltage outputs of all channels.

3.2.3 Pulse-Width Demodulation

As mentioned, there are no pulse-width demodulation boards on the market
which support the required 13 channels of pulse-width demodulation. A market

J •survey produced only a couple of microcontrollers with multi-channel pulse-width
demodulation capability. The Motorola MC68332 microcontroller was chosen for the
simulation system since it is the only device capable of demodulating all 13 channels
by itself.

12



The MC68332 is a highly capable device, featuring a 32-bit central processing
unit (CPU) based on the MC68020, a time processor unit (TPU), a queued serial
module (QSM), 2KB of standby RAM, built in chip select capability, and a clock. See
Figure 8. The MC68332 is fully compatible with the MC68010 and most of the
MC68020 instruction sets. The TPU and QSM are stand-alone subsystems inside the
MC68332. The TPU, with its own execution unit, can operate independently of the
CPU. It also has its own data storage RAM and microcode ROM. The microcode has
a period/pulse width accumulator algorithm which provides the desired pulse-width
demodulation function for the simulation system. The TPU controls 16 independent
channels, each with a dedicated I/O pin.

At the time this project began, the MC68332 was only available in sample
quantities as a preproduction part. Further, it was only available as a surface mount
device, making it very difficult to use on a wire-wrap board. To assist developers,
however, Motorola offers an M68332 Business Card Computer (BCC). This is a 2.25
inch by 3.5 inch printed-circuit board with an MC68332, 64k x 16-bit EPROM, 32k x
16-bit RAM, RS-232C I/0 port, and interface connectors for connecting the BCC to a
target system. See Figure 9. The EPROM contains the M68332BUG Debug Monitor,
which is a debug tool used to develop systems built around the MC68332. The BCC
is used on the pulse-width demodulation board for the simulation system.

"The BCC is very useful for developing software for the MC68332 and

X SYTES ~ oscaSELECTS
STANDSY -.

S. .... SYSTEM•A~SI

Figure 8: Block Diagram of MC68332

13

/

2 ,: . . . . . . .. . . . . . . . - . .. . .



Connectors for
interfacing to
target system.

.. MC68332..

RS-232C Port

2.25 inches

Figure 9: MC68332 Business Card Computer

integrating it into a target system (such as the pulse-width demodulation board for
this simulation system). However, it also puts constraints on the developer. The
debug monitor is useful for debugging programs, but forces developers to work within
the confines of its memory map. It also forces the use of the MC68332's chip select
feature. The chip select feature sets 11 of the MC68332's pins to be chip select pins
rather than their normal function (address lines A23-A19, function codes FC2-FCO,
and bus control lines Bus Grant Acknowledge (BGACK* - the ,sterisk indicates an
active low signal), Bus Grant (BG*), and Bus Request (BR*)). This prevents the use
of straight address decoding for off-BCC peripherals and makes it difficult to use
peripherals which normally request the local bus for access to board RAM and ROM
(separate from BCC RAM and ROM, which are only accessible to the BCC's
MC68332).

14

, 7



SECTION 4 - PULSE-WIDTH DEMODULATION BOARD DESIGN

4.1 PULSE-WIDTH DEMODULATION BOARD REQUIREMENTS

The pi.'-pose of the pulse-width demodulation (PWD) board is to convert the 13
channels of pulse-width modulated control surface commands generated by the flight
computer into digital form. The converted commands must then be made available
to the VME processor board for use by the vehicle simulation software.

Since a VMEbus architecture was chosen for the simulation system, the PWD
board must be a VME size board (9.2 inches by 6.3 inches) and interface to the
VMEbus. The PWD board must be capable of storing program code for the MC68332,
which dictates the use of an EPROM. Though the BCC has its own EPROM, it is
surface mounted to the BCC and contains the debug monitor code. Trying to
-eprogram the BCC EPROM would sacrifice its main feature, the debug monitor.
Therefore, a separate EPROM must be part of the PWD board.

The PWD board must make the converted pulse-width data available to the
68030 processor board. Tnia requires some type of RAM for storing the data and a
VMEbus interface. While the BCC has some on-BCC RAM, it is not accessible to any
device but the MC68332 due to the design of the BCC. However, just putting a RAM
on the PWD board does not solve the problem. The RAM must be accessible by both
the BCC for storing data and the 68030 processor board for reading data. An ordinary
RAM, with a single set of address and data lines, depends on the bus control lines to
prevent data access collisions (two devices trying to read memory at the same time,
producing erroneous results). The BCC cannot use its bus control lines (Bus Request
(BR*), Bus Grant (BG*), and Bus Grant Acknowledge (BGACK*)) since they aie set
by the debug monitor to be chip select lines and hardwired to the on-BCC RAM. This
problem was solved by using a dual-port RAM (DPRAM). A DPRAM solves the local
bus collision problem since it has two sets of address and data lines, permitting two
devices to access its rmemory simultaneously without using bus control lines. It also
permits zero wait access when each device tries to access different data locations at
the same time.

4.2 TOP LEVEL DESIGN

A functional block diagram of the PWD board is shown in Figure 10. Since the
time processor unit (TPU) converts signals into word-wide data (16-bits) and the BCC
defaults to word addressing, a 16-bit wide EPROM and DPRAM were chosen to
simplify their interface to the BCC and the VMEbus.

S~15



EPROM
(Stores Program Code)

VMEbus

S:•D em o dudl arion i'!:•(Mea(Suand

i" o::~0f :.P ulse -Wid t hi:i

Modu'atea

Figure 10: Functional Block Diagram of Puls-WidtW Demodulation Board

The VMEbus Specification (ANSI/IEEE STD 1014) has many, interfacing
requirements for its 101 signal lines. There are strict requirements for driving and
loading each of the five types of signal lines' totem-pole high current, totem-pole
standard, t'iree-st~te high current, three-state standard, and open-collector. There are
also strict timing requirements on responses to bus control lines and interrupt lines,
as well as daisy-chaining requirements for interrupt signals. Fortunately, there is a
device (only one) on the market which greatly simplifies interfacing to the VMEbus:
the Motorola MVM6000. With the exception of ACFAIL*, A31-A08, and D31-D08,
the MVME6000 directly connects to all VMEbus signal lines. This saves considerable
board space and eliminates the need to design a VMEbus interface with discrete
components which meets all the VMEbus Specification requirements for timing,
sourcing, and loading of signal lines. The PWD board uses the slave mode of the
MVME6000, since the PWD board never initiates a VMEbus transfer. If future
enhancements are needed, the MVME6000 provides full bus mastership and bus
controller capability. Though some of the capabilities of the MVME6000 are noC
currently implemented, the savings in board space alone justify its use.

16

in EPROM



4.3 OPERATION OF PULSE-WIDTH DEMODULATION BOARD

The MC68332 executes a program stored in the PWD board's EPROM. That
program initializes the PWD board and sets the MC68332 to take in all the pulse-
width signals, convert them to digital data, and place the data in a table in the
DPRAM. This continuous process takes place on the left half of the PWD board.

On the right half of the PWD board, the MVME6000 responds to periodic
requests (every ten milliseconds) from the 68030 processor board to read the pulse-
width data in the DPRAM. The MVME6000 translates the VMEbus read request into
a local bus read to access the DPRAM. Once initialized, the two sides of the PWD
board operate independently. This allows for very fast data transfers on both sides
since there is never any local bus arbitration required when accessing the DPRAM
(this is what DPRAMs are designed for - transparent access to the same data by
separate devices).

4.4 DECODING THE MC68332 ADDRESS LINES

In order to use the BCC and its debug monitor, all peripheral devices on the
PWD board must be mapped into the address space defined by the BCC's debug
monitor. As shown in the PWD board's address map, Figure 11, the EPROM,
DPRAM, and MVME6000 are integrated into the available BCC address space.

The MC68332 has a feature which converts A23-A19, FC2-FC0, BR*, BG*, and
BGACK* signal lines to dedicated chip select lines. A chip select option register for
each chip select line can be set to define a base address and a block size for which the
associated chip select pin will be asserted. The debug monitor and the BCC use this
feature. The debug monitor sets up the chip select option lines to enable on-BCC
peripherals (RAM and EPROM). In order to use the BCC, the PyD board must be
designed so that addressing its peripheral devices is compatible with the BCC's chip
select definitions. The PWD accomplishes this by using a programmable logic device,
the Lattice Corporation G2OV8A Generic Array Logic (GAL), to deIode a combination
of address lines and BCC defined chip select lines (the address decoder GAL is U1 on
the schematics in Appendix A). The GAL then generates the appropriate peripheral
chip select signals. The GAL equations for address decoder GAL U1 are in Appendix
F.

4.5 INTERFACING THE MC68332 TO THE MVME6000

The MVME6000 requires an on-board processor for its initialization. It cannot
be initialized by an off-board device since it does not handle the VMEbus control lines
until it is initialized. Thus the MC68332's address, data, and control lines (R/W*,
DS*, AS*, SIZO, SIZM, CLKOUT, DSACK0*, DSACK1*, HALT*, and RESET*) must
be connected to the MVME6000. This presents a problem, since the MC68332's (as
well as the MVME6000's) addres3 and data lines must also be connected to the
DPRAM. A direct connection between the MC68332 and the MVME6000 would

17

Y__



FFFFFF
TPU

-FI'FEOO

FFFE00

QSM

FFFC00
MC68332 Internal RAM CTRL

FFFB00FFFAO0 O
OPEN FFE800 >

AO000OO

MVME6O0n

85000
EPROM

80000
BCC EPROM

(3-32BUG MONITOR)
60000 (f

ctI

20000
DPRAM

10000
BCC TARGETr RAM

3000
BCC SYSTEM RAM

0000

Figure 11: MC68332 Memory Map for PWD Board

prevent the desired transparent, conflict free access to the DPRAM. The design
solution to this probl ,m, as shown in Figure 12, was to isolate the MC68332 from the
MVME6000 through bi-directional buffers (74245's). These buffers are address
decoded on the PWD board to the same address range as the MVME0000, so they are
only enabled when the MC68332 reads from and writes to the MVME6000. Since the
MVME6000 has no need to initiate access to the MC68332, the buffers are wired to
only allow MC68332 to MVME6000 accesses. This is not a limitation, since without
the local bus control lines, the MVME6000 could not initiate access to the MC68332
anyway. If the PWD board was redesigned to use the MC68332 by itself (without the
BCC), it would not be difficult to implement two way access if it was desired.

The 74245 buffers do a good job of establishing a connection when the
MC68332 addresses the MVME6000 and disconnecting the signals when the MC68332
is not addressing the MVME6000. However, they impose one additional complication.
The DSACKx* signal (DSACKx* refers to the DSACKO* and DSACK1* lines, which

18



C n Control Lines
ADDRESS A a Address Lines
DECODER ADDRESS D a Data Lines

GAL DECODER
FPAM0E GAL

MC68332 DPRAM MVME6000

11 O E • InterfaceC
A A A I~mmmA

b D DT D, CSO

FIGURE 12: MC68332 to MVME6000 Isolation Buffers

"in their asserted state will always be DSACKO* = 1 and DSACK1 = 0 (word size
acknowledge) for this project) to the MC68332 requires an open-collector driver, but
the DSACKx" signal out of the 74245 cannot be fed directly into an open-collector
output buffer since when the 74245's are not enabled, their pins are in a high-
impedance state. The high-impedance state is interpreted by an open-collector output
buffer as a low input, which sets the buffer output to low, continuously asserting the
DSACKx" line. This would prevent the MC68332 from reliably writing to and reading
from any peripheral device, since the MC68332, seeing DSACKx* asserted, would
prematurely end the bus cycle. To solve this problem, another signal, which is only
valid when the MVME6000 is accessed but does not pass through the buffers, is
needed to determine when DSACKx* from the MVME6000 is valid. This requirement
is satisfied by the MVME6000 chip select signal (MVMECSO). The logic required for
valid DSACKx* generation is shown in Figure 13.

By inverting MVMECS* and the MVME6000's DSACKx" signal, and then
feeding them into an open-collector output NAND gate, a reliable DSACKx" signal is
generated to the MC68332.

'A



(after inverter)
MVMECS* DSACKx* MVMEa- DSACKx Desired Output

1 1 0 0 1
1 0 0 1 1
0 1 1 0 1
0 0 1 1 L0

NAND
ADDRESS Logic

DECODER GAL

MC68332 MVME6000

9':- -

FIGURE 13: MVME6000 DSACKx* Generation Logic

4.6 INTERFACING THE MC68332 TO THE DPRAM

The DPRAM is an Integrated Device Technology IDT7133. It has 55
nanosecond (ns) access time and can automatically arbitrate when both sides request
data simultaneously. If simultaneous req-ests are to separate addresses, both will
be serviced within the device's normal 55 ns response time. If simultaneous requests
are to the same address, the DPRAM will arbitrate between the two requests,
granting one and asserting a BUSY* signal to the other. Since the DPRAM does not
assert any type of data transfer acknowledge signal, DSACKx* must be generated for
the DPRAM (both right side and left Lide) by the PWD board since both the MC68332
and the MVME6000 require DSACKx*.

The maximum response times for the DPRAM are broken down as follows:

Read Cycle Read Cycle
(BUSY* negated) (BUSY* asserted) Write Cycle

55 ns 80 ns 40 ns

20

/ ... . ./ . //



The DPRAM has five control lines which are duplicated for each side: R/W* Upper
Byte (UB), R/W* Lower Byte (LB), Chip Enable* (DPRAMCE*), Output Enable*
(DPRAMOE*), and Busy*. Since all reads and writes to the DPRAM are words (16-
bits), the R/W* UB and R/W* LB are tied together, forcing the DPRAM to always
perform word-wide operations. During either a read or a write, the DPRAMCE* line
must be asserted, but the output enable line, DPRAMOE*, only needs to be asserted
during a read operation. The DPRAM is enabled by a GAL (U1 on the schematic,
Appendix A) which decodes the address and control lines from the MC68332. When
a valid address for the DPRAM is decoded, the GAL asserts DPRAMCE* for reads and
writes, and DPRAMOE* for reads.

The MC68332 is operating at 16.77 MHz, producing a clock period of 59.6 ns.
As shown in the timing diagram in Figure 14, it takes one clock period after DSACKx*
is asserted for the MC68332 to latch in data during a read cycle. Since the DPRAM's
response time of 55 ns is faster than the MC68332 latch time of 59.6 ns, it appears
that DSACKx* can be generated immediately from the DPRAM's left chip enable
signal DPRAMLCE*. However, when a memory access conflict occurs, it takes the
DPRAM

a maximum of 35 ns to assert BUSY*. DSACKx* must not be asserted until valid
"data is guaranteed to be on the bus when the MC68332 latches it in. Therefore,
DSACKx* generation must be delayed 35 ns so that BUSY* can be asserted if there
is a conflict. When a conflict occurs, DSACKx* must be further delayed until BUSY*
is negated. Once BUSY* is negated, DSACKx* may be asserted immediately since the
DPRAM will have valid data on the bus before the MC68332 can latch it in.
DSACKx* generation is accomplished by feeding the DPRAMLCE signal into at least
a 35 ns delay, and then NANDing it with BUSY*. This logic is shown in Figure 15.
The exact timing delay of DPRAM DSACKx* will be addressed in the MC68332
Interface to EPROM section.

4.7 INTERFACING THE MVME6000 TO THE DPRAM

The MVME6000 latches data from the local bus faster than the MC68332,
"though its user manual does not specify just how fast it is. DSACKI1 to the
MVME6000 for DPRAM accesses must be delayed the full 55 ns to ensure that the
MVME6000 latches in valid data. This delay already encompasses the time it takes
the DPRAM to assert BUSY*, so this is not a concern for this side. As on the left side,
the right side DSACKx* is generated by delaying the DPRAMRCE signal. This signal
is delayed by looping multiple times through the address decoding device (a
programmable generic array logic device), and then further delayed by two AND gates,
before it is NANDed with BUSY* to produce DSACKx* to the MVME6000. The
combination of these device delays (the time it takes a signal to pass through a device)

* are enough for the DPRAM to provide valid data to the MVME6000 and VMEbus.
Note that the NAND gates which generate DSACKx* are open-collector output (7403
devices), and the DSACKx* lines have the required pull-up resistors. Open-collector
signal lines permit multiple devices to drive the line since each device is effectively
disconnected from the line when not asserting it (pulling it low).

21

,,., \ ,i,/ ,-. -",S / ;::.'\ :"! . / X



59.6ns

SO Si S2 S3 SA S5

CLKOUT L

DSACKO

DSACK1

D15-DO

5ns mrin

Figure 14: Timing Diagram for MC68332 to DPRAM Access

4.8 INTERFACING THE MC68332 TO THE EPROM

The Advanced Micro Devices Am27C1024 EPROM was chosen to store the
program code for the MC68332. The Am27C1024 (referred to simply as EPROM) is
"the first EPROM device to offer the desired 16-bit inputs and outputs. This simplifies
the connection to the MC68332 since it is set to read 16-bit words. Access time is 150
ns (fast by EPROM standards). To access the EPROM, a GAL (Ul on the schematic,
Appendix A) is programmed to decode addresses put out by the MC68332 and
generate the EPROM output enable (EPROMOE*) signal when an address mapped
"to the EPROM address range appears on the address bus.

Like the DPRAM, ',*.e EPROM does not generate any type of "data ready"
"signal, requiring other logic to generate DSACKx*. The EPROM's 150 ns access time
is much slower than a normal MC68332 read cycle, requiring a delay for DSACKx*
generation. The minimum DSACKx* delay is the EPROM's 150 ns maximum access
time minus the 59.6 ns latch time of the MC68332, which equals about 91 ns. A GAL
is used on the .PWD board (U3 on the schematic in Appendix A) to generate the
appropriate DSACKx* delay. With a clock signal input on pin 1, the GAL can be
programmed to clock its outputs. Normally, the GAL's outputs would reflect the state

22

• / . , " 7' / '" 'L Y .: ,/ ,
;9• . - - 7 ;. ./., .\ .• " . ,..9 /." .' .. ,



/.-

"> DPRAMW
>" ~Address•

Vc3Decoder
AGAL

S!!ii:!iiii• Wilii;::• DPRAMOE

;. "... .-~i::!:::.:i ..:: : • .: iDPRAM CE
'" 'A23-A12

": .... -• DPRAMCE

ieT ClockedVcc Delay

J.AL

• /i°"FIGURE 15: DPRAM Left Side DSACKI* Generation

I'•"i; " 'of its inputs after only 10 ns (the GAL has a 10 ns signal propagation delay from

[:•=--•Jinput to output). Using clocked outputs, the outputs will not reflect the state of the
.:• ""inputs until the fallhng edge of the next clock. The minimum and maximum clocked

propagation delays are depicted in Figure 16. The logic for generating DSACKx* for
the EPROM is very similar to that of the DPRAM. The EPROM output enable line
is also used to generate DSACKx* for the EPROM. In order to maximize the use of
each GAL, and to minimize board space used, the same clocked GAL is used to
generate the appropriate DSACKx* delays for both the EPROM and the DPRAM.

To determine the clock value for the GAL, both the DPRAM and the EPROM
DSACKx* delay requirements should be considered. The DSACKx* delay for both
devices sho2'.d be as close as possible to their respective minimum required delays.
It ib not a problem for DSACKx* to be delayed longer than necessary, but it does slow
down the MC68332's program execution each time that device is accessed. Recall that
the DPRAM requires a minimum delay of35 ns, and the EPROM requires a minimum
delay of 100 ns. These two delays are close enough that it shouldn't be a problem for
the same GAL to generate both delays.

Efficient access to the DPRAM is the primary consideration for choosing a clock
frequency for two reasons: (1) data will be stored in the DPRAM on a regular basis,

23

S... """ ..- - -.. . ' ' - ,: < " , \ .; ." ' '



Minimum Delay for Signal to Propagate

TCLK PERIOD

CLOCK I F......

INPUT

OUTPUT

- ;*---

1lns TMINGALDFjAY -1 ins

Maximum nelay for Signal to Propagate

INPUT

OUTPUT

-4.-- GA =E~ 9ns +
9n-s TXGDaA 9 + TCLK PERIOD

Figure 16: Minimum and Maximum Clocked GAL Delays

and (2) the EPROM program code can be copied from EPROM to RAM for faster
execution (after which the EPROM would no longer need to be accessed). In
calculating the minimum DSACKx* delay time for the DPRAM, there is the minimum
GAL propagation delay, TOL MIN, of 11 ns (see Figure 16) plus the number of delay
loops that the signal is fed back through the GAL (n) multiplied by the GAL clock

24



period:

DPRAM DSACKx* Minimum Delay Equation:

TOALMIN + (fn * TCA.CLKPEMOD) >= 35 ns

The clusest commonly available clock frequency to solve this equation is 32 MHz. A
32 MHz clock has a period of 31.25 ns (1A(32x1O 6) = 31.25 ns). Solving the DPRAM
DSACKx* delay equation:

11 no + (n * 31.25 ns) >= 35 no
n * 31.25 ns >= 24 ns

n >= .77

Since n must be a whole number, n = 1 delay loop through the GAL. The
resulting minimum DPRAM DSACKx* delay is:

11 ns + 31.25 ns= 42.25 ns

This is close to the minimum delay of 35 ns, and allows a satf•ty margin of about 7 ns.
The maximum DPRAM DSACKx* delay is:

DPRAM DSACKx* Maximum Delay Equation:

STcAL mAx + (n TGAL CIX pERIOD) - Maximum. iSAC~x* Delay

"From Figure 16, TGAL MAx = 9 ns + TGAL CLK PERIOD, so the equation is:

(9 ns + 31.25 ns) + (1 * 31.25 ns) = Maximum DPRAM DSACKx* Delay
=71.5 ns

At about double the minimum required DPRAM DSACKx* delay, 71.5 ns appears to
be a long time. However, it only incurs one additional MC68332 clock period delay
(wait state), and since the minimum delay is close to the lower bound of 35 ns, a
slightly faster clock frequency would not improve the delay time by a significant
amount.

The 32 MHz clock turns out to be a very good selection for the EPROM
DSACKx* delay, too. The EPROM DSACKx* delay must also take into account the
30 ns high-to-low transition delay of the open-collector buffer shown in Figure 17.
Note that the NAND gate on the DPRAM DSACKx* line was not considered since the
objective of delaying DPRAM DSACKx* is to wait for DPRAM BUSY* to be valid,
which occurs prior to the signal passing through the NAND gate. The minimum
EPROM DSACKx* delay is:

TGAL MIN + TBU•,ER DELAY + (n * TcAL CtX PERIOD) >- 91 ns
11 no + 30 ns + (n * 31.25 ns) >= 100 ns

n >= 1.9
n=2

25

--- -- --



"EPROM
Address

SMC68332 Decoder
MC68332GAL
AS*

- DPRAMOE

R/W
A23-AI2

•DSCKI Cok

VCC Clocked
Delay

GAL

Figure 17: EPROM DSACKx* Delay Circuit

The EPROM DSACKx* delay signal must feed back through the GAL twice. This
yields the following minimum and maximum delay times:

Minimum EPROM DSACKx* Delay:

TGOLMIN + TBU•MR DELAY + (n * TeAL CLZ PEROD)= delay
11 ns + 30 ns + 62.5 no =- 103.5 na

Maximum EPROM DSACKx* Delay:

TOAM + +TBuFFER DELAY + (n * TLA cLK PERIOD) - delay
40.25 ns +- 30 ns + 62.5 ns = i33 ns

These EPROM DSACKx* delay times compare very favorably to the lower bound of
91 no.

These delays in generating DSACKx* for the EPROM and DPRAM are
necessary to insure that valid data is on the bus when the MC68332 latches the data
during a read cycle, and so that the MC68332 maintains valid data on the bus until
it is written into the DPRAM during a write cycle. The MC68332 has a requirement,
though, that DSACKx* be negated within 80 no of the negation of AS* and DS* to

26

- - , " ,- , -. - .



prevent DSACKx* from interfering with the next bus cycle. AS* and DS* are negated
when the MC68332 detects the assertion of DSACKx*.

Unless special design considerations are made, the negation of DSACKx* for
each peripheral on the PWD board follows the same path as DSACKx* assertion. In
calculating DSACKx* negation times for each peripheral, maximum delay times for
each contributing device must be used to ensure that DSACKx* will never exceed 80
ns. The first DSACKx* negation delay for the DPRAM and the EPROM is the 10 ns
propagation delay of the address decoder GAL (U1 in the schematic, Appendix A; all
non-clocked GALs on the PWD board have a propagation delay of 10 ns). DSACKx*
generation (and therefore negation) for the DPRAM and the EPROM rely on their chip
select lines. Since DS* is part of the address decoder GAL equations for asserting
each of the chip select signals, the negation of DS* (along with the negation of the
other bus signals by the MC68332) causes the chip select signals to be negated 10 ns
later. Following the path for DSACKx* assertion, the next delay is due to the clocked
delay GAL (U3 in the schematic) for both the DPRAM and the EPROM. As shown
above, the DPRAMCE signal is delayed up to 71.5 ns by the delay GAL, and then
another 22 ns by the NAND gate. This totals 103 ns maximum DSACKx* negation
delay for the DPRAM, which is 23 ns too long:

10 ns address decoder GAL delay
+ 72 ns maximum clocked GAL delay
+ 22 ns NAND gate
= 103 ns maximum unmodified DSACKx* negation delay

To shorten this negation delay, the U3 delay GAL is programmed so that the negation
of the DPRAMCE* input will negate the DPRAMCE output on the next clock cycle.
It won't wait for the DPRAMCE* input to be looped once back through the delay GAL,
as it does for DPRAMCE assertion. This saves 31 ns, making the maximum
DSACKx* negation delay 72 ns, which is within the 80 ns maximum negation
requirement.

The EPROM DSACKx* negat'•n delay is handled the sawe way. In calculating
DSACKx* negation delay, though, the transition of the open-collector output buffer
is from low-to-high, which is only 10 ns. So the EPROM DSACKx* negation delay is
automatically 20 ns faster than its assertion time. The maximum negation delay
without modifications would be:

10 ns address decoder GAL delay
+ 113 ns maximum clocked GAL and buffer delay
f 123 ns maximum unmodified DSACKx* negation delay

which is 43 ns too slow. This delay is shortened in the same manner as for the
DPRAM above. The clocked delay GAL is programmed so that negation of the
EPROMOE* input will negate the EPROM DSACKx* signal on the next falling clock
transition, rather than waiting for two feedback loops as in EPROM DSACKx*
assertion. This saves 62 ns, making the maximum EPROM DSACKx* negation delay
123 ns - 62 ns =61 ns. This well within the 80 ns maximum negation delay and is

27

/ ,.----- 9 -4 7



even faster than the DPRAM DSACKx* delay due to the buffer transition delay being
faster than the NAND gate.

4.9 INTERFACING THE MVME6000 TO THE VMEBUS

As previously mentioned, all of the VMEbus signals except ACFAIL*, A31-A08,
and D31-D08, can be directly connected to the MVME6000. To enable the MVME6000
on the VMEbus side, an address decoder is required. A GAL on the PWD board (U12
on the schematics in Appendix A) is programmed to enable the MVME6000 for
VMEbus addresses 400000hex to 410000hex. The VMEbus address map is shown in
table 18. Since a VMEbus 24-bit standard address range was selected, the GAL drives
the MVME6000's MATCH24* line to enable it. If desired, the MVME6000 could have
been mapped into the VMEbus 32-bit extended address range or the VMEbus 16-bit
short address range by having the GAL decode the appropriate address lines and drive
MATCH32* or MATCH16*. The address decoder GAL also decodes address
410000hex to 4lxxxxhex for the MVME6000's Match Global Control and Status
Register (MATCHGCSR*). This signal allows other VMEbus boards to read the
MVME6000 GCSR to determine the state of the PWD board (whether it is ready,
halted, failed, etc).

The VMEbus signal lines that are not connected to the MVME6000, namely the
address and data lines (ACFAIL* is not used by the PWD board), require the
appropriate buffers for driving the VMEbus lines. The 74543 buffer is commonly used
to drive the VMEbus address and data lines. Additional buffers are needed to latch
the input and output data from and to the VMEbus. The MVME6000 controls these
buffers, as shown in the schematics in Appendix A. Since the PWD board is only
using 16-bit data and 24-bit addresses, these are the only VMEbus data and address
lines brought onto the board.

Table 2: VMEbus Memory Map

DPRAM 400000 - 40FFFF Hex

GCSR 410000 - 41FFFF Hex

D/A Board 0C0000 - OC0080 Hex

68030 Board 800000 - FFFFFF Hex

4.10 RESET CIRCUIT AND STATUS LEDS

The PWD board has a reset switch that resets the MC68332 and the
MVME6000 (the only two devices which have a RESET* line). As shown on sheet 3
of the PWD board schematics in Appendix A, the reset switch is connected to a
common 555 timer debounce circuit for reliable operation.

28

Y



There is a bank a five status LEDs which show the status of the PWD board.
Figure 18 shows the order of the LEDs and their meaning. LED1 blinks at an 8 Hz
rate when the PWD software is executing. This LED is driven by TPU Channel 15,
which is programmed to output a 128 Hz pulse width with 50 percent high time. This
is the slowest pulse rate possible from a TPU channel since the TPU is initialized to
its fastest clock rate for the most accurate pulse-width measurements. In order to
slow down the blinking rate so that it is noticeable (rather the., appearing to be a
steady "on" condition), the signal is fed into a 74F161 binary cm .ater. The counter
divides the frequency by 16, yielding a noticeable blink rate of b Hz.

LEDs 2 and 3 are connected to the BCC's and MVME6000's HALT* lines,
respectively. If either of these two devices halt, the corresponding status LED will
show it.

LED 4 is the MVME6000"s board fail signal (BRDFAIL*). When the PWD
board is powered-up, LED 4 is initially lit. This reflects the fact that the MVME6000
has not yet been initialized. When the MC68332 initializes the MVME6000, it resets
the MVME6000's BRDFAIL* bit in the MVME6000's local control and status register.
This turns off LED 4. The state of the BRDFAIL* bit is also reflected in the global
control and status register. This allows other VMEbus boards that want to access the
PWD board to poll that bit for determining when the MVME6000 has been initialized

* and is ready for data transfers.

LED 5 is the RESET* LED. Whenever the RESET* line on the PWD board is
active, such as when the reset switch is pushed, LED 5 lights up.

29

• , ,, . . .. . . .. . .. *



LED1 -8 Hz Blinking LED

(program is running)

ULD2- BCC Halt*

LED3 MVME6000 Halt*

SLED4 - MVME6000 Board Fail*

LE15 - RESET*

Figure 18: PWD Board Status LEDs

30

Y./



SECTION 5 - SYSTEM SOFTWARE

5.1 SOFTWARE FOR THE MC68332 PULSE-WIDTH DEMODULATION BOARD

The MC68332 is programmed in Motorola MC68020 assembly language. The
program is compiled into Motorola S-3 record format and burned into the AMD
27C1024 EPROM. A functional block diagram of the MC68332 software is shown in
Figure 19.

The first thing the program does is set the MC68332 clock register for 16 MHz
operation (its fastest option). An area of the DPRAM is then cleared for storing the
pulse-width accumulation values. It is these pulse-width values stored in the DPRAM
that the 68030 processor board reads across the VMEbus. To help maximize
throughput, the interrupt handlers for the TPU pulse-width accumulate channels are
copied from EPROM to RAM since code executes faster from RAM than EPROM (due
to the slower response time of EPROM). With the interrupt handlers for each pulse-
width accumulate channel in place, the program loads the interrupt handler address
for each one into the appropriate vector number offset in the interrupt vector table.
The program then initializes the TPU. The TPU clock prescalar is set to its fastest
mode of operation, providing a maximum resolution of 250 ns for the puise-width
measurements. This is far better than the 2 ILs output r•solution of the flight
computer.

The input/output channels of the TPU are initialized to 13 channels of
interrupt driven pulse-width accumulate (demodulate) and one channel of pulse-width
modulated output (to drive the blinking status LED). All TPU channels function
independently and have their own dedicated input/output pin on the MC68332. Each
of the 13 pulse-width accumulate channels are programmed for identical operation,
varying only by where they store their pulse-width accumulated data. Each pulse-
width accumulate channel starts counting on a low-to-high transition on its input pin,
and continues to count until a high-to-low transition is detected. When the high-to-
low transition is detected, the channel is programmed to generate an interrupt. The
interrupt handler stores the accumulated pulse-width count and clears the channel's
interrupt status request so that the channel is ready to interrupt again on the next
high-to-low transition. The TPU channels store their count in separate upper byte
and lower byte registers. The interrupt handler must copy the lower byte, then check
if the count was large enough to flow into the upper byte register. If there is data in
the upper byte, it must be copied into the upper byte location where the lower byte
was stored, and then the upper byte register must be cleared since the TPU only
automatically clears the lower byte. While checking the upper byte for data may seem

31

/1I I I i a a



like unnecessary overhead, it it much faster to check for data and skip storii;g and
clearing the register when no data is preseitt than to default to always storing and
clearing the register (unless all pulse-width accumulates overflow into the upper byte).

Lastly, the MVME6000 is then initialized to slave mode. After initializing the

Start Interrupt Handlers

IEt Clock Rate Channel 1:
to 16.77MHz :.Copy PWD Data

5zemti to DPRAM

Clear DPRAM
Arta for..
PWD Dataj

[Copy Interrupt
ýHandlerS to

[Load Interrupt

Vectors

Initialize CPU
Sand' TPU

"Initialize
MVME6000 IChannel 13:

Copy PWD Data
to t)PRAM

Figure 19: Pulse-Width Board MC68332 Software Block Dia mn

32



TPU and the MVME6000, the program goes into a continuous loop in which it doesn't
do anything. The TPU executes independently of the CPU part of the MC68332, so
the CPU is left with nothing to do. The CPU is not totally idle, however, since it
processes the interrupts generated by each pulse width accumulate channel.

* 5 .2 SOFTWARE FOR THE MC68030 PROCESSOR BOARD

The 68030 is programmed in C. C and assembly were the only compiler and
* assembler available that could produce files for running on the 68030 board. As with

the MC68332, the program is compiled into Motorola S-3 record format and burned
into an EPROM so that it can execute on the 68030 board. A functional block
diagram is shown in Figure 20.

To guarantee real time response, the vehicle simulation code must execute once
every 10 ms. To do this, the program initializes the board's Zilog Z8536
Counter/Timer and Parallel 1/0 Unit (CIO) to generate an interrupt once every 10 ms.
The simulation software then executes in the interrupt handler. As long as the
interrupt handler is done executing before the CIO issues the next 10 ms interval
interrupt, the simulation software meets its real time execution constraints. Any time
that is left over between interrupts is spent displaying control surface positions and
sensor output values. This allows an easy visual check of the simulation to see if it
is functioning properly.

When the program starts, it first initializes the digital-to-analog (D/A) board
for fast output refresh rate (every channel is updated once every 0.85 ms), a 0 to 5-volt
output range, and to start scanning and outputting the channels. The program then
initializes the CIO to generate an interrupt every 10 ms. The interrupt vector is set
to the address of the interrupt handler in a vector definition table which is linked into
the program during the link process when generating an executable file.

The simulation software (in the interrupt handler routine "timer30") first
S..restarts the CIO timer for the next 10 ms interrupt, then reads the demodulated

pulse-width data from the DPRAM. This data is converted to "degrees of control
surface defle ;ion", and then scaled into the proper range for each control surface.
The simulation software then executes a model of the vehicle's actuators. This
accounts for the actuator response rate (how long it takes the servo to move from its
current position to the commanded position) and delay (how long it takes the servo to
start moving)! The rest of the simulation code was obtained by converting an existing
Fortran softwire model of the aircraft to C using a translator. The translation was
close, but not perfect. Some parts of the translation had to be modified to get the code
to execute properly. The translated code perfor ma the following computations:

* - Comp te the aerodynamic variables based on the state variables
"(which ae computed from the new surface positions and the previous
state of the vehicle).

- Compute longitudinal forces and moments.

33

/C •/ o °



--- Av"

Start Interrupt Handlers

Reset::CIO
Initialize the
D/.A,, Board

GtControl Surface
'): IPosition ffrom DPRAM

Initialize the IConvert PWD Data: to
Counter/Timer I Degrees anid Scale

ý(CIO) Ow to- Proper Range

Simulate Actuator
.Display Surface [Response

Compute Aero
Variables

.Corn p '! t e
Longitudinal

SForces & Moments

[Compute Lateral

Convert &Scale

ISend Outputs to1

En in-l te rr UptC

Figure 20: 68030 Processor Board Software Functional Block Diagrmm

34



2 1 . , -: ./.-: I I

- Compute lateral forces and moments.

- Compute the next state of the vehicle based on six degree-of-freedom
nonsymmetric rigid body equations of motion.

The interrupt handler converts the computed sensor values (predicted rates, attitudes,
air speed, altitude, side-slip) from double precision variables to 12-bit variables.

/ -These 12-bit variables are then scaled to meet the output range of the particular
sensor they are simulating. This is necessary so that the flight computer gets the
&a,me type of signal from the simulation that it would normally get from the vehicle
sensors while flying.

i5'7K
/7

... '.

. /

. //



SECTION 6 - CONCLUSIONS

6.1 SYSTEM PERFORMANCE

Using a VMEbus Analyzer board, the simulation was timed from the 68030
board's first read from the DPRAM pulse-width data table to the last sensor channel
write to the D/A board. This is the time it takes the simulation software to completely
execute once. This time was consistently measured at 7.92 ins. To get the entire
simulation time, the D/A board output refresh sate must be added:

7.92 ms execution time for simulation software
+ 0.85 ma. output refresh rate for D/A board

8.77 ms simulation execution time

The pulse-width conversion process is not figured into this execution time since it is
a continuous process. The most recent pulse-width output from the flight computer
will be in the DPRAM data table when the simulation software reads it. The 8.77 ms
aimulation time meets the 10 mns execution rate required for a real time simulation.
The remaining 1.2 ms between simulation execution is used by the 68030 to display
simulation values to a monitor.

To verify that this system is an accurate simulation of the air vehicle,
simulation data was stored in real time to a RAM table. After the pilot commanded
a maneuver to the flight computer, the stored simulation data was retrieved and
plotted. The control algorithm used in these tests was a rate controller. Three single
axis step inputs were commanded. The proper response to these inputs is a sharp
change in the pitch, roll, and yaw rates, which should then settle to a rate of zero.
The simulation response was plotted (shown in Figure 21) and compared to plots of
a verifi ed software model of the aircraft performing the same maneuver. These plots
were virtually identical, verifying the accuracy and response rate of the simulation
system. These results are as accurate as those provided by hiring specialized facilities
to perform simulations. This simulation system provides much faster turn around of
simulation data and is more flexible in terms of being able to vary and record any of
the simulation parameters.

6.2 LIMITATIONS

The simulation system is limited by the simulation software to certain flight
conditions. The simulation software is designed for a limited range of altitudes, rates,
airspeeds, and attitudes for the vehicle. The current values for these ranges meet the

36



majority of flying conditions for the unmanned research vehicle. Since this vehicle is
flown at low dynamic rates, the current response range of the simulation software is
not a limiting factor for testing flight alMrithms and flight computer operation. If a
different vehicle was to be simulated, an aircraft model for that vehicle would have
to be developed and programmed into the simulation system.

Response Test.

0 0.0

-4. . J0.o'o.1.
0O. 50. 0. 50. 0.50.

STime (sec) Time (sec) Time (sec)
j ~ 0. -~0.5-

01.*-" ." ' " " 50

2. . 0.0 2 50

2 0. 50. 0. 50'. 0. 50.

8 Time (sec) Time (sec) Time (sec)

iC

g 2. 0.5 R.

-2. 0.

0.2 -2.0.
0. 50. 0. 50. 0. 50.

8 Time (sec) Time (sec) Time (sec)

Fiur 2.: Plot ofSmltdArratRsosst.Snl xsIpt

S~The simulation system cannot replace flight tests. The model cannot accurately
• simulate unique flying conditions, such as losing or failing one or more control

surfaces. These are some of the experiments that are ideal for testing on an
unmanned aircraft since they are important to high performance, righter aircraft, but
are extremely dangerous to flight test on manned aircraft.

37



The current simulation system is designed to emulate the unmanned research
vehicle and verify the operation of its flight computer, which runs at a 50 Hz update

V rate. Since it is non-intrusive to the flight computer, this simulation system can
x interface to any flight computer that controls this unmanned research vehicle and

executes at 50 Hz. With minor modifications to the simulation software (for
predicting the next state of the vehicle), a slower flight computer could -11so be
verified. Due to the current execution rate of the simulation software, it would be
more difficult to accurately verify the operation of a flight computer with a faster
frame rate. The simulation system would either require a faster processor to increase
its execution rate, or a simpler aircraft model to reduce execution time.

6.3 FUTURE ENHANCEMENTS

The 68030 processor board could be replaced with a more powerful processor
board to either verify the operation of faster flight computers or execute more complex
simulation software. While the current system can use the informational flight
displays of Lambda's ground station, a more graphica! front end which displays
scenery could be developed to give the pilot a better feel of "flying" the flight computer.

6.4 CONCLUSIONS

The simulation system meets all of its design objectives. It provides a real
time, highly accurate simulation of an unmanned aerial research vehicle. The
simulation system non-intrusively connects to the vehicle's flight computer, making
the flight computer part of the simulation "loop". In this manner, the pilot can "fly"
the flight computer, data can be collected, and the proper operation of the flight
computer can be verified.

38



APPENDIX A

PULSE-WIDTH DEMODULATION BOARD SCHEMdATICS

39



00

o DL

A rn

1.~~~0 0..1. M
J4a CC

a,~~ OoIA,-

0 0 N

0000000000

cc.

cc

---------- u

o *

U, * 2

Inq -Xt p

AA

-INS

A N 3r
03 0IXIr

4#11111111 a 31 S

0 ~uU-

40

P -

7' 7 7-



St cmIu

pl W .0 00

-~~~ ~ ~ ~ ~ - -- ----- O
A~ C W

A a

C3

coot

cn c.f

2 3 .41 -

IIL

.-- .- I/.c

111 0



ccI cc

LI . ;i--------

01 .1

0CLU C,

CIO

in ~ 0 CU m CiI

NJ N MN 4m

00

CC

At u -AJ0

23

z 31

o owl 14

N~r C2



A'

aL c

VuJ

4~ co
SOo Cc::C. o o oc

ORO

380Wd

z Tm

.4 - -4 0 - -

ru m

.4 43a

9 1A > V Nfr

<00:440 3 -

430



a I uI - I

CC 0z

~~~~~~ E . J Q . U

EPP~

a Tim ,

en .

• i..-cJ

-------

A

:.* e z

-- 2,

2CD

M I

CD = =u

1'(n

2z- tO 0
eqc u5¶i¶!¶IJ u e

044

____m-7_______e



APPENDIX B

PULSE-WIDTH DEMODULATION BOARD LAYOLT1r

45



SWI

Pulse-Width Demodulation Board Layout, Component Side

46

U11

C2i



APPENDIX C

PULSEWIDTH DEMODULATION BOARD PARTS LIST

PART DEVICE DESCRIPTION
NUMBER(s)

U1 GAL20H8A Programmable Generic Array Logic
Device

U2 AM27C1024- 1 Megabit (65,536 x 16-bit) CMOS
15ODC EPROM

U3 GAL20H8A Programmable Generic Array Logic
Device

U4 SN7407 TIL Hex Buffer/Driver (with Open
Collector High-Voltage Output)

U5 IDT7133S-55G 32K (2K x 16-Bit) CMOS Dual-Port RAM

U6 GAL2OH8A Programmable Generic Array Logic
Device

U7 SN7403 TIL Quad 2-Input NAND Gate (with
Open Collector High-Voltage Output)

U8, U9, U10 SN74F245N Fast Octal Bus Transceiver (with 3-State
Outputs)

Ull MVME6000AC VMEbus Interface

U12 GAL20H8A Programmable Generic Array Logic
Device

U13 NE555 555 Timer

U14 SN74F04 Fast TTL Hex Inverter

U15, U16 SN74ALS645A-1 Octal Bus Transceivers (with 3-State
,,,_ _ Outputs)

U17, U18, SN74F543 Fast Octal Registered Transceiver, Non-
U19 Inverting (with 3-State Outputs)

47



PART IftVICF DESCRIPT1ON

NUMBER(s)

U20 Clock 32 MHz

U21 SN74F161A Fast Binary Counter (Divide by 16)

U22 SN74F245N Fast Octal Bus Transceiver (with 3-State
Outputs)

U23 SN74FO8 Fast TTL Quad 2-Input AND Gate

C1, C2 MC68332-BCC Business Card Computer Connectors

C3 96-Pin, 3 Row VMEbus Connector
Connector

C4 20-Pin IDE Pulse-Width Signal Input Connector
Connector

RB1, RB2, Resistor Pack 15 2200 Resistors
RB3

R9 180k1 Resistor 5% fixed composition, ¼ Watt

R10 1Ma 5% fixed composition, ¼ Watt

C1 lf capacitor tantalum

C2 0.11f capacitor tantalum

C3 0.01f capacitor ceramic disc

LED 1-5 red LED

SWi reset switch

48

__ _ _ _ _ __ _ _ _ _ _/



/

APPENDIX D

PROGRAMMABLE GENERIC ARRAY LOGIC DEVICE EQUATIONS

MODULE MC332
TITLE PERFORMS 332 ADDRESS DECODING FOR EPROM, DPRAM, MVME6000,

AND 332 TO MVME6000 BUFFERS. MVMECS DECODED TO EPROM
RANGE.

SCOTT ROBERTSON 13 JUNE 1992';

U1F DEVICE "P2OV8S';

A16, A17, A18, A19 PIN 1, 2, 3,-4; "A19 - CS6
A20, A21, A22, A23 PIN 5, 6, 7, 8; " CS7, CS8, CS9, CS10
A10, All, DS, RW PIN 9, 10, 11, 13;
A8, EPROMOE PIN 14, 15;
_DPRAMLOE, _DPRAMLCE PIN 18, 19;
A15, A14, A13, A12 PIN 16, 17, 20, 21;
_MVMECS, A9 PIN 22, 23;

H, L, X =I, 0, JL;

EQUATIONS
_EPROMOE = !(A23 & A22 & A21 & !A20 & !A19 &

IA15 & !A14 & !DS & RW); "$080000 - $083FFF

-DPRAMLOE = !(A23 & A22 & !A21 & A20 & A19 & UA15 & !A14 &
!A13 & !A12 & !-DS); "$010XXX & READ

_DPRAMLCE = !(((!A23 & !A22 & A21)#(A23 & A22 & !A21)) & A20
& A19 & !A15 & !A14 & !A13 & !A12 & !DS); "$010XXX

MVMECS = !(A23 & A22 & A21& !A20 & !A19
& !A15 & A14 & !A13 & A12 & !DS); "$085XXX (& BUFFERS)

TEST VECTORS
([A23, A22, A21, A20, A19, A18, A17, A16, A15, A14, A13, A12, All,

A10, A9, A8, DS, RW]
(-EPROMOE, DPRAMLOE, _DPRAMLCE, _MVMECS])

49



[H, H, H, L, L, X, XYX, L, L, X, X, XX, X, X, L, H]
-> [L, H, H, HI; "_EPROMOE FOR $080000-083FFF

"L,L,L, L, L, L, L, L, L, L, L, L, L, L, L, L,H]
"(-> L, H, H, H]; _EPROMOE FOR $OOOOXX

[H, H, L, H, H, X, X, X, L, L, L, L, X, X, X, X, L, X1
-> [', L, L, H]; "_DP OE&CE FOR $01OXXX AND R/W

[L, L, H, H, H, X, X, X, L, L, L, L, X, X, X, X, L, XI
-> [H, H, L, H]; "_DPRAMLCE FOR $01OXXX AND !RjW

[H, H, H, L, L, X, Y, X L, H, L, H, X, X, X, X, L, X1
.> [H, H, H, LI; "_MVMECS FOR $085XXX

END MC332

50



MODULE DELAYGAL
TITLE 'PERFORMS EPROM DSACK1 DELAY FOR EPROM TO 332, AND ACTIVE
HIGHDPRAMLCE DELAY FOR NANDING WITH BUSYL SIGNAL FROM DPRAM
TO

GENERATE DSACK1.
SCOTT ROBERTSON 3 MAY 1992';

U3 DEVICE 'P20V8R'; "'R -CLOCK IS USED.

CLK PIN 1;
EPROMOE PIN 2;
SDPRAMLCE PIN 3;

SEPWAIT1IN PIN 4;
EPWAIT2 IN PIN 5;.

DPWAITINi PIN 6;
DPRAMLCE PIN 15;
DPWAIT OUT PIN 16;
EPWAIT2 OUT PIN 20;
EPWAIT1 OUT PIN 22;

_EPDSACI' PIN 21;

H, L, X, C =I, o, X..C.;

EQUATIONS
DPWAIT OUT :=! DPRAMLCE; "INVERTS SIGNAL (CLOCKED OUTPUT)
DPRAMLCE:= DPWAIT IN; "SIGNAL JUST DELAYED BY THE CLOCK
! EPWAIT_ OUT:= ! EPROMOE; "OUTPUT = INPUT, DLY'D BY THE CLK
IEPWAIT2_OUT := !_EPWAITIIN; " SIGNAL JUST DELAYED BY THE

CLOCK
!-EPDSACK1 :=!_EPWAIT2 IN & !_EPROMOE; "DLY'D BY CLK AGAIN (2ND

TIME)
"EPDSACK1 WILL BE NEGATED SHORTLY

AFTER _EPROMOE IS NEGATED - NO DELAYS.

TEST VECTORS
([CLK, _DPRAMLCE] -> [DPWAITOUT])

[C, H] -> [LI;
[C, L] -> [HI;

TEST VECTORS
([CLK, DPWAITIN] -> [DPRAMLCE])

[C, L -> ILI;[C, H-I ->CHI;

51



TEST VECTORS
([CLK, _EPROMOE] -> [EPWAIT1_OUT])

[C, HI ->[HI;
[C, LI -> [LI;

TEST VECTORS
([CLK, _EPWAIT1IN] -> [_EPWAIT2_OUTI)

(C, HI ->H;
(C, LI-> [LI.

TEST VECTORS
([CLK, _EPWAIT2_IN, _EPROMOEI]> LEPDSACK1])

[C, H, H] -> [H];
[C, H, LI -> [H];
[C, L, HI ->[HI;
[C, L, LI ->[L];

END DELAYGAL

52



MODULE DPRAMGAL
TITLE TERFORMS DPRAM ADDRESS DECODING FROM THE VME/VME6000
SIDE.

THE DPRAM WILL BE DECODED TO VME ADDRESS $40XXXX.
SCOTT ROBERTSON, 3 MAY 1992';

U6 DEVICE `P2OV8S'; "NO CLOCK USED

A12, A13, A14, A15 PIN 1, 2, 3, 4;
A16, A17, A18, A19 PIN 5, 6, 7, 8;
A20, A21, A22, A23 PIN 9, 10, 11, 21;

PWRITE, PDS, PAS PIN 23, 14, 13;
_DPRAMROE, _DPRAMRCE PIN 15, 16;
DPRAMRCE0, DPRAMRCEIN PIN 22, 20;
DPRAMRCE1, DPRAMRCEIN2 PIN 19, 17;
DPRAMRCE2 PIN 18;

H, L, X =, O, X;

EQUATIONS
DPRAMROE = !(!A23 & A22 & !A21 & !A20 & !A19 & !A18 & !A17 &

!A16 & !PAS & !_PDS & _PWRITE); "$4OXXXX & READ

_DPRAMRCE = !(!A23 & A22 & !A21 & !A20 & !A19 & !A18 & !A17 &
IA16 & !PAS & !_PDS); "$40XXXX

DPRAMRCEO = (!A23 & A22 & !A21 & !A20 & !A19 & !A18 & MA17 &
!A16 & !PAS & !PDS); "$40XXXX, ACTIVE HIGH

DPRAMRCE1 = DPPAMRCEIN; "LOOP THE DPRAMCEO BACK THROUGH
THE

"GAL FOR A DELAY IN ASSERTING PDSACK1.

DPRAMRCE2 = DPRAMRCEIN2; "2ND DELAY LOOP.

TEST VECTORS
([A23, A22, A21, A20, A19, A18, A17, A16, -PAS, _PDS, PWRITE]

> [_DPRAMROE, _DPRAMRCE, DPRAMRCEO])

[L, H, L, L, L, L, L, L, L, L, HI-> (L, L, H]; "_DPRAMROE & CE'S
[L, H, L, L, L, L, L, L, L, L, L] -> [H, L, HI; "_DPRAMRCE'S

TEST VECTORS
([DPRAMRCEINI -> [DPRAMRCE1])

IL] -> [LI;
[HI -> (H];

53

o. /

.• _ /



TEST VECTORS
([DPRAMRCELN2] ->[DPRAMRCE2])

ILI ILI[;
IHI- [HM;

END DPRAMGAL

54



MODULE MVMEGAL
TITLE TERFORMS MVME6000 ADDRESS DECODING FROM THE VME BUS.

THE MVME6000 WILL BE DECODED TO VME ADDRESS $400XXX.
THE GCSR WILL BE DECODED TO $401XXX.
SCOTT ROBERTSON, 3 MAY 1992';

U12 DEVICE 'P20V8S'; "'S' - NO CLOCK USED

A8, A9, A10, All PIN 1, 2,3,4;
A12, A13, A14, A15 PIN 5, 6, 7, 8;
A16, A17, A18, A19 PIN 9, 10, 11, 13;
A20, A21, A22, A23 PIN 14, 23, 16, 17;
_MATCHGCSR, _MATCH24 PIN 18, 19;

H, L, X 1, 0, X;

EQUATIONS
! MATCHGCSR (!A23 & A22 & !A21 & !A20 & !A19 & !A18 & !A17 &

W.A16 & !A15 & WA14 & !A13 & A12); "$401XXX

I-MATCH24 = (!A23 & A22 & !A21 & !A20 & !AW9 & !A18 & WAI7 &
!A16 & !A15 & !A14 & !A13 & !A12); "$400XXX

TEST VECTORS
(FA23, A22, A21, A20, A19, A18, A17, A16, A1S, A14, A13, A12]
-> .MATCHGCSR, _MATCH24])

[L, H, L, L, L, L, L, L, L, L, L, HI- >[L, H]; "$4O1XXX
[L, H, L, L, L, L, L, L, L, L, L, L ->[H, L]; "$4O1XXX

END MVMEGAL

55

'N -



BIBLIOGRAPHY

Advanced Micio Devices. Memory Products Data Book. Advanced Micro Devices, Inc.,
1989.

FutureNet. ABEL 3.0 User's Manual. FutureNet Division, Data I/ Corporation,
1988.

Clements, A. Microprocessor Systems Design - 68000 Hardware. Software, and
Interfacing. PWS-Kent, 1987.
Cobalt Blue. FOR C: A FORTRAN to C Translator. Lightfoot & Associates, Inc.,

1991.

Data I/O. FutureNet Schemstic Designer User Manual. Data I/O Corp., 1991.

Fairchild. FAST. Fairchild Advanced Schottky TITL. Fairchild Camera and
Instrument Corporation, 1985.

Fairchild. uALinear. Fairchild Camera and Instrument Corporation, 1982.

Fairchild. TTL Data Book. Fairchild Camera and Instrument Corporation, 1978.

Heurikon. HK68/V3D VMEbus 68030-based Single Board Computer User's Manual.
Revision B. Heurikon Corp., 1991.

Integrated Device Teclhnology. High Performance CMOS Data Book Supplement.
Integrated Device Technology, Inc., 1989.

Lattice Semiconductor Corp. GAL DATA Book. Lattice Semiconductor Corp., 1988.

Motorola. CPU32 Central Processor Unit Reference Manual. Motorola, Inc., 1990.

Motorola. Linear and Interface Integrated Circuits. Motorola, Inc., 1985.

Motorola. M68300DIBUG Development Interface Debug Monitor User's Manual.
Motorola, Inc., 1991.

Motorola. M68300 Family - Cer.iral Processing Unit Reference Manual. Motorola,
Inc., 1990.

56



Motorola. M68300 Family - Time Processor Unit Reference Manual. Motorola, Inc.,

1990.

Motorola. MC68030 User's Manual. Motorola, Inc., 1989.

Motorola. MC68332 System Integration Module User's Manual. Motorola, Inc., 1989.

Motorola. MC68332 User's Manual.. Motorola, Inc., 1990.

Rafiquzzaman, M. Microprocessors and Microcomputer-based System Design. CRC
Press, Inc., 1990.

Signetics. FAST Data Manual. Signetics Corp., 1987.

Software Development Systems. CrossCode C for the 68000 Microprocessor Family.

Software Development Systems, Inc., 1990.

VMEbus International Trade Association. The VMEbus Specification ANSI/IEEE
Standard 1014. VMEbus International Trade Association.

VME Microsystems International Corp. VMIVME-4132 32-Channel 12-Bit Analo,
Output Board with Built-In-Test. VME ?" s-),ystems International Corp., 1991.

Zilog. Z8036 C-CIO/Z8536 CIO Counter/Timer and Parallel I/0 Unit Technical

Manual. Zilog, Inc., 1987.

57

U.S. GOVERNMENT PRINTt.NG OFFICE 750-113



CIArC:

afrwl

- II


